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Pseudo-oriented dipole calculations of the lattice potential and 
phase transition interpretation in KCN 
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Groupe MOPS, Centre Lomain d'Optique el Electronique des Solides, Universit6 de MeQ- 
Supelec. 2 me E Belin-Technopale. Mefz 2000, 57078 Melz Cedex 03, France 

Received 17 May 1993 

Abstract. Using different lattice potential calculation models, we attempt to explain the phase 
transition process and the evolution with the temperavre of the CN- molecule orientation in 
KCN. These calculations =le made for the pseudo-cubic phase and consist of a comparison 
between two lanice potential models, one in which a three-body interaction is inmduced to take 
account of the anisotropic evolution with temperature of the elastic constants, and the other- 
so-called 'pseudo-oriented dipole' model-in which calculatiolui are made with CN- elastic 
dipoles oriented along the principal ( 1  lo), (001) and ( I  1 I )  cubic directions of the pseudo-cubic 
phase. 

1. Introduction 

At room temperature, a KCN crystal has a pseudo-cubic NaCI-type structure in which the 
CN- dumbbell is rapidly reorienting between its different possible orientations (OOl), (1  10) 
and (111) [I]. 

As the temperature is lowered, an order-disorder phase transition appears at 168 K 
and a ferroelastically ordered structure is observed with an orthorhombic cell as shown in 
figure 1 [Z]. 

In this phase no electrical order appears; the CN- electric dipole lies close to the former 
(110) directions of the cubic cell and can still flip over 180". In this elastically ordered 
phase, it is not possible to distinguish between C and N ions. 

With decreasing temperature an electrically ordered phase appears gradually at around 
80 K, also showing an orthorhombic structure with an antiferroelectric ordering of CN- 
dipoles. 

Similarly to KCN, other alkali cyanides undergo structure phase transitions (as 
summarized in [SI), revealed close to the transition by an anamolous softening of the elastic 
constant CM [4,5] which leads to a large Cauchy discrepancy cl2 - CM [5]. This softening 
has to be introduced into lattice potential calculations. 

In our calculations, we use a standard lattice potential model in which we introduce a 
three-body interaction (TBI) in the Coulomb potential as described by Cochran 161 in order 
to take into account the anisotropic behaviour of the evolution of the alkali-cyanide elastic 
constants with temperature. 

This 
assumption appears to be correct at high temperatures when the CN- dumbbell is rotating 
rapidly (dipole reorientation rate t = s [3]). The CN- molecule is also compact 
(rc = rN = 1.185 A and the distance between C and N is small: rC-N = 1.17 A [7]). 
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In the first step, we assume that the CN- molecule has a spherical shape. 



7204 P Bourson and D Durand 

I Pseudo-cubic I1 Orlhorhombic I11 Orthorhombic (0:;) 
908-168K 168-83K 83.0 K 

Figure 1. Stluctw of KCN in arientationally disordered (I), elmtically ordered (11) and 
elecbically ordered (Ill) phases. For the latter two, the new orthorhombic cell with axes n, 
b and c is indicated within lhe framework of the original cubic structure. (From Durmd er 01 
LZlJ 

In the second step, using the averaged overlap parameter found in the previous 
hypothesis, we calculate a new lattice potential in which the CN- molecule is assumed 
to be made up of two identical ions separated by 1.17 8, [7]. This 'aspherical molecule' 
is oriented along the main cubic directions (001). ( I  IO) and (1  11) which are still possible 
with a l a s e  probability in the cubic phase [I]. 

The comparison between the values of potential calculated with the TBI model and with 
the 'pseudo-oriented-dipole' (POD) model provides a phenomenological interpretation of the 
phase transition process in KCN. 

1.1.  Rigid ion model 

The standard lattice potential is calculated by evaluating the contributions of the Coulomb 
potential Wc, the van der Waals potential Wvow and the overlap repulsive (Born-Mayer) 
potential WBM to the energy of the lattice [SI: 

(1) wL(r) = wC(r) + WVDW(r) + wBM(r). 

The Coulomb contribution W,(r) is given by the well known expression 
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where Z = + I  for a singly charged ionic crystal, olM is the Madelung constant and R is 
the nearest-neighbour separation between positive and negative ions at equilibrium (in the 
NaCl structure, R = where ao is the cubic lattice parameter). 

The van der Waals potential is given by the relation 

where the cij are the dipole-dipole van der Waals coefficients, the dij are the quadrupole- 
dipole coefficients and rij is the distance between ions i andj. These coefficients have been 
evaluated (table 1) using the Slater-Kirkwood variational method [9] .  They are given by 

cij = (3eh/2~){ffiffj/[(ffi/Ni)”* + ( ~ l j / N j ) ~ / ~ l )  (4) 

and 

dij = (27h2/8m)qor, 

x [ ( ~ i / h ’ i ) ’ ’ ~  + ( c ~ , / N j ) ” ~ l ~ / { ~ i / N i  + ffj/Nj + ~ [ ( ~ / N i ) ( f f j / N j ) l ” * ]  (5) 

in which Ni and Nj are the effective numbers of electrons for the ions i and j, respectively, 
participating in the van der Waals interaction. q and ffj are the electronic polarizabilities 
of ions i and j, respectively. 

Table 1. van der Waals cceffrciens calculated by the Slater-Kirkwood equation IS]. 

Cij dij 
(kcal i6 mol-’) 

K-K 1145.44 484.08 
K-CN 2040.34 1329.42 
CN-CN 4034.17 3271.60 

meal As mol-’) 

Quantitative values for each ion are given in table 2; the Ni have been evaluated by 
Scott and Scheraga [lo] and the electronic polarizability of K+ ions by Tessman et a1 [ 111. 

Table 2. Panmeten used in our models: the ionic radius r in the Bom model. the effective 
number N ,  of elecbans and the electric polarizability ai. 

Ion 6) N (A’) 
K’ 1.503 [13] 17 [91 1.33 [IO1 
CN- 1.77 [71 12 191 3.458 

The polarizability of the CN- dumbbell has been calculated by Gready et a1 [I21 who 
gives values of ffZz for polarizability along the molecule axis and aIX in the perpendicular 
direction. 

Since we assume a spherical shape for the CN- ion, we use in our calculation a mean 
polarizability for CN- given by 

(6) 
1 2 
3 U ffCN = -ff + pxx. 
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The short-range overlap repulsive contribution to the potential has the general expression 
(according to Born and Mayer [14]) 

ri + rj - rij 
WBM(rjj) = Z b B i j e x p  

ij 
(7) 

where rj and rj are the ionic radius of ion i and j, respectively, evaluated from the Born 
model [SI and rjj is the distance between the centres of mass of ions i and j. Bij are the 
Pauling [15] coefficients defined by 

(8) Bij = 1 + Zi/ni + Zi/nj 
where Zi and Zj are the valences of ion i andj ,  respectively, and ni and nj are the numbers 
of outer electrons of ion i and ion j, respectively. 

For the NaCI-type structure of KCN, we take into account only the first- and second- 
nearest-neighbour contributions (rij = R and R&). 

WBM[r) reduces to the following expression: 

WBM(R) = ~ ( ~ B K c N ~ X P [ ( ~ K  + rcN - R ) / p l + 4 e x p ( - R f i / p ) [ B ~ ~  eXp@rlc/g) 

+ BCNCN ~ ~ P ( ~ ~ C N C N / P ) I I .  (9) 

In this calculation, the CN- dumbbell is assumed to be rapidly rotating; thus a mean 
radius rCN has been chosen as represented in figure 2. 

1.17 A 
t_ 

n m 1.185 A 

2 x 1.77 A F i g w  2. Illustmtion of the characteristic lengths for the CN' dumbbell 

Two unknown parameters b and p are introduced into this repulsive contribution. 
The parameter b represents the strength of the repulsive potential and will be determined 

by the equilibrium condition when the d2rivative of the total potential with respect to r is 
equal to zero at the equilibrium distance R: 

(dWL/dr)l,=R = 0. (10) 

p represents the hardness overlap parameter. It is assumed to be the same far each 
neighbouring ion irrespective of its positive or negative nature. Thus p represents a mean 
value of the overlap. It depends on temperature and is determined using the general 
expression of the bulk modulus 1/K for the FCC structure which depends on the elastic 
constant values: 
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1.2. Three-body interaction model 

In fact, CN- is not spherical and thus KCN presents a large elastic anisotropy before the 
phase transition. 

This anisotropy is revealed by a large Cauchy discrepancy c12 - CM, especially when 
approaching the phase transition where a softening of CM is observed. 

In order to take account of this anisotropy we introduce a three-body contribution to 
the total potential using the model proposed by Cochran [6]. 

In this model, the charge Ze of an ion is modified by the overlap interaction of 
neighbouring ions and becomes Ze[l + 6f(r)] in which f ( r )  has the general expression 

f ( r )  = foexp(-r/p). (12) 

p has the same meaning as before. Thus, the Coulomb potential evaluated only for the 
six nearest neighbours is now modified and has the general expression 

Wc(R) = -(oIMe2ZZ/R)[1 + 6 foexp(-R/p)I2. (13) 

In this expression the quantity 1 + 6 foexp(-R/p) represents a chargetransfer factor 

In the NaC1-type structure, according to the work of Cochran [6], the Cauchy discrepancy 
between neighbouring ions. 

and the function f ( r )  are related by the following relation: 

c12 - cM = o.l942(a/ar)[l +6foexp(-r/p)12. (14) 

It should be remarked that, in alkali halides, the Cauchy discrepancy of c12 - cu is 
small ((0.14.01) x 10" dyn cm-') and the factor [ I  +6foexp(-R/p)J2 is usually reduced 
to 1 + 12foexp(-R/p) [161. 

For KCN, the Cauchy discrepancy is important ((1-1.5) x 10" dyn c d )  and this 
simplification is not possible. 

Knowledge of c,2 - CM at each temperature gives a relation between fo and p. Thus 
our model now introduces three parameters 6, p and fo to be fitted with four experimental 
quantities: C I I ,  clz, CU and R. 

At each temperature, the value of R has been determined from our structural studies 
[17] while the elastic constants CII, CIZ and cu have been measured by Haussiihl et a1 [SI 
using sound velocity measurements. 

The repulsive contribution W, to the lattice potential is now the sum of the former 
Born-Mayer potential plus a 'charge-transfer' WCF term: 

wR(r) = ivCF(r) + WBM(r). (15) 

1.3. Results of the three-body interaction model 

The TBI model has been established for alkali halides in which the Cauchy discrepancy is 
small and in which ions have a spherical shape [18]. Complete calculations and a comparison 
between the RI and TBI model are presented in [18] for these materials. 

The situation is somewhat different in alkali cyanides; nevertheless the use of the TBI 
model described above gives interesting information on the possible influence of the various 
contributions on the lattice potential during the phase transition process. 
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Table 3. Values of w n ~ b u t i o n s  of the Coulomb potential Wc, the van der Waals potential 
WVDW and the repulsive potential WR to the lattice potentid WL in the RI and TBI models. 

WR e c a ~  mol-') WL (ked mol-') 
T ao Cauchy discrepancy Wc "VOW 

253 6.5086 1.1635 -178.569 -16.037 32.497 27.355 - 162.108 -167.251 
233 6.5016 1.2140 -178.761 -16.142 32.520 27.000 -162.384 - 167.903 
213 6.4943 1.2680 -178.962 -16.253 32.543 26.621 - 162,672 - 168.585 
193 6.4866 1.3290 -179.175 -16.371 32.561 26.180 -162.985 -169.366 
173 6.4786 1.4032 -179.396 -16.495 32.533 25.180 -163.358 -170.287 
168 6.4766 1.4215 -179.451 -16.526 32.527 25.466 -163.450 -170.511 

In table 3, we report the different values of Coulomb potential Wc, the van der Waals 
potential WVOW and the repulsive potential W, contributions to the lattice potential Wj. in 
the RI model (without the anisotropic contribution) and in the TB1 model, We observe that 
the introduction of the TBI contribution influences the value (up to 7 kcal mol-') of the 
lattice potential and its temperature evolution. 

In figure 3, we present the temperature evolution of the lattice potential for KBr and 
KCN calculated with the RI model together with this potential evolution calculated with 
the TBI contribution for KCN. In the R I  model, the two curves for KBr and KCN lie very 
close to each other and follow the same temperature evolution. This is mainly due to the 
similarity of the ionic radii of Br- and CN- in a rapidly reorienting configuration. The 
lattice parameters of the two materials are also little different. 

-161  

m - 
E -" . 
a 
0 
- 

a 
m 
0 

- 1 7 1  .. . 
160 180 200 220 240 260 280 300 

Temperature (K) 
Flgurc 3. Lattic potentials calculated for KBr with the RI model and for KCN with the R I  model 
and with TBI versus temperature. 

We observe an important difference between the RI and TBI model curves for KCN. 
The RI model assumes that the CN- molecules are completely disorientated or that the 



POD calculations of W ,  and phase transitions in KCN 7209 

statistic repartition of CN- orientation is uniform. This is not correct close to the phase 
transition temperature. The TBI model takes into account this CN- orientational effect for 
each temperature by the introduction into the model of the elastic behaviour of the crystal 
observed through the Cauchy discrepancy and the bulk modulus values. This anisotropic 
effect increases with decreasing temperature and the three parameters p .  b and fo used to 
take it into account are different from those observed for potassium bromide (table 4). 

Table 4. Values Jt room temperature of pmmeters I). fn and b used in the RI and TBI models 
for KBr and KCN. 

P (A) b (kcal mol-’) 
fo 

TBL RI TBI TBI RI 

KBr 0.36874 0.36700 -3.030 5.3097 5.5186 
KCN 0.34637 0.39359 -306.06 -3.2264 4.9070 

For KCN, at room temperature, the overlap parameter p indepen, It of the model 
chosen has a value comparable with that obtained for alkali bromide [IS] while this averaged 
parameter p largely decreases with increasing temperature when the TBI model i s  used. It just 
takes into account the progressive freezing of CN- dipoles in their preferential orientations 
( p  = 0.29205 A at168 K). 

The negative pre-exponential factor fo in equation (12) has a value two orders of 
magnitude larger for KCN than for alkali bromide. fo strongly increases with decreasing 
temperature. Nevertheless, figure 4 shows that the ‘chargetransfer’ effect given by 
99’ = (&)‘(I + 6f0exp(-R/p)l2 for KCN remains quite constant (around 0.85e2) with 
temperature. This is true also close to the hlmsition temperature. 

P 
0 - 0.90 
b - I  U 

” 
KBr 

0.80’ I 
160 180 200 220 240 260 280 300 

Temperature ( K )  
F iyre  4. Values of charge transfer qq‘ versus T obtained by the TBI model for KBr and KCN. 

In alkali bromides this charge-transfer effect remains close to unity and shows the good 
‘ionicity’ of these crystals while the charge-transfer effect obtained for KCN is  comparable 
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with the value of the ‘ionicity degree’ determined by Phillips [I91 for AgBr (0.85e2). We 
know that this compound presents almost the same ionicity as KCN. The charge-transfer 
value obtained for KCN thus seems to be quite rsasonable. 

The charge-transfer effect influences the Born-Mayer part of the repulsive contribution 
and gives a negative parameter b, in order to compensate for the perturbation due to the 
larger Cauchy discrepancy. 

The evolution of Cauchy discrepancy influences p ,  fo and b but has no influence on 
the ionicity of the K-CN bond. This result is important and shows that the model that we 
use is macroscopically self-consistent. 

1.4. CN pseudo-oriented dipole model 

It was interesting to study the lattice potential evolution with temperature considering the 
CN- molecule not a single entity but as made up of two identical ions with ionic radii 
rc = rN = 1.185 A [7] separated by a C=N bond whose length d(C-N) equals 1.17 A, the 
two ions having a uniform charge 9c = q N  = -0.5e. 

We thus calculate now the various lattice potentials when all these ‘dumbbells’ are 
oriented along one of the three principal directions (OOI), (110) or ( I l l )  of the cubic cell. 
These directions are not equally probable close to the transition [l]. In none of these 
configurations has a cubic structure a real meaning. Nevertheless we attempt to calculate 
a lattice potential using the cubic parameter obtained from x-ray and neutron scattering 
measurements. In order to keep the averaged pseudo-cubic structure, we assume that the 
overlap parameter p ,  found above in the TBI model, takes into account the deformations of 
the cubic ‘cage’ surrounding the CN- independently of its orientation. 

The main aim of our calculation is to determine the Coulomb, van der Waals and Born- 
Mayer contributions to the potential in each of the three CN- ‘orientational configurations’. 
For this, we calculate for a given ’configuration of orientation’ the distances and the angles 
between the interacting ions K+, and N-O.’. 

For the Coulomb contribution, these calculations have been made over 1728 unit cells 
before resulting in a convergence of the series. 

For the van der Waals potential, we have introduced the directional value of the CN- 
dipole polarizability with a ellipsoidal shape. For each position of the CN- dumbbell, the 
polarizability has been calculated using the parallel and perpendicular polarizability values 
given by Gready et ul [12]. 

The repulsive contribution (Born-Mayer type) has been evaluated taking into account 
the interaction of first and second neighbours according to equation (9). 

The parameter b has been adjusted as before from the equilibrium condition (equation 
(10)). 

1.5. Results ofpseudo-oriented model 

In figure 5 ,  we have reported the temperature evolution of the values of the (OOI), (110) 
and (1 11) pseudo-oriented values of lattice potential. They are combined with the values 
of the lattice potential obtained previously for the pseudo-cubic TBI model. 

At room temperature, of the three possible orientations, the configuration with CN- 
molecules oriented along (001) direction represents the lowest potential. 

When the temperature decreases. the (1 11) configuration potential becomes slightly 
deeper than the (001) potential around 220 K. This means that the (001) and (111) 
orientations are equally probable at this temperature. This result is in agreement with 
neutron scattering measurements of the orientation probability of CN- molecules made by 
Rowe et a1 [I]. 

P Bourson and D Durund 
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Before the experimentally observed transition temperature T,, the potential obtained 
from the 'pseudo-cubic' TBI model is deeper than any potential obtained in the POD model. 
Nevertheless with decreasing temperature the 'oriented' potentials cross the pseudo-cubic 
potential successively at T = 107 K for the (110) orientation, at 156 K for (001) and at 
168.5 K for (111). 

We note that the experimental transition temperature has been measured at i", = 168.3 K 
[ZO], precisely at the temperature, where the (111)-oriented potential curve crosses the 
pseudo-cubic potential line. 

Since the work of Bijvoet and Lely [21], we know that below T, the CN- dumbbells 
point towards (110) and not towards (001) or (111) which nevertheless presents above 
i" the deepest potentials and the greatest orientation density probabilities. This apparent 
contradiction needs some discussion which will be given later. We can also observe that the 
(1 10)-oriented potential crosses the pseudo-cubic potential value at 156 K; this temperature 
is very close to the temperature at which the elastic constant c a  equals zero in KCN [5] 
(T = 153 K). 

A rough calculation of the lattice potential has been made below Tc, using the 
orthorhombic lattice parameters and assuming that the overlap parameter p remains constant 
and identical with that obtained in the pseudo-cubic TBI model at Tc. The results (table 5) 
show that the configuration with CN- dipoles oriented along the (110) direction presents 
the deepest potential. These rough results indicate only that orthorhombic phases with CN- 
oriented along the (001) and (111) directions are not realistic. 

Let us recall that the above calculations using the POD model have been made as a guide 
for interpretation of the experimental results. 

2. Discussion 

We known from experiment [I] that above i", the CN- elastic dipoles point towards the 
(1 11) or (001) directions, while below i", these elastic dipoles are oriented along the (1 10) 
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direction [ZI]. Our calculations above and below Tc account for these results. But what is 
happening at T,? 

Let us try to describe how (before T,) a CN- elastic dipole rotates from a (1 11) direction 
(which is the most probable orientation i n  the cubic cell) to another (1 11) direction. 

P Bourson and D Durand 
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Figure 6. Thc lattice potential topography above T, (168 K) versus the angle of rotation for 
the (IIO), (1 I I )  and (001) orientations of CN- dumbbells. The shape of the potential between 
minima has been chosen as B parabolic function of the angle of rotation around each minimum. 

Using simple geometrical arguments it is easy to see that, to go from a (1 I I )  direction 
to the closest (001) direction, the dipole must rotate by 54" whereas, from (111) to (110), 
the rotation is  only 36" in the (1 IO) plane. There also exist twice as many (110) directions 
as (001) directions. Thus, from statistical and geometrical points of view, reorientation 
from a (1 11) direction to another (111) orientation is easier by a ( I  IO)  step than by a (100) 
step. 

Figure 6 reports the lattice potential topography versus angle of rotation for (1 IO), (1 11)  
and (001) orientations of CN- dumbbells just above T, = 158 K. The minima are obtained 
from our calculations from the POD model, and the shape of the potential between minima 
has been chosen as a parabolic function of the angle of rotation around each minimum. 

Owing to the angular distance between each minimum of the potential, the height of the 
potential barrier between (1 11) and (001) minima is higher than between ( 1  11) and (1 10) 
minima. 

The ordering of CN- dipoles during the phase transition process keeps the (001) cubic 
direction unchanged with just a contraction of the reticular distance along this direction 
when passing from the pseudo-cubic cell to the possible orthorhombic cell. When the CN- 
molecule occupies one of the three orientations (OOl), (111) or (IIO),  a simple calculation 
allows us to evaluate the minimum length of the (001) lattice distance when all ions are in 
contact along the (001) direction. This distance c, has to be compared with the cubic lattice 
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jll 
! 

in[ 
0 36 0 54 90 0 

Reorientation angle e 
Figure 7. The lattice potential topography below T, (166 K) versus the angle of rotation for 
the (110). ( 1 1 1 )  and (001) orientations of CN- dumbbells. The shape of the potential between 
minima has been chosen as a parabolic function of the angle of rotation around each minimum. 

parameter at Tc (a = 6.477 A). For the CN- (001) orientation, c, = Z(rK+rCN) = 6.546 A 
which is greater than a;  for the CN- ( 1  11) orientation, c, = 2(rK + rc,/&) = 5.509 A 
which is less than a; for the CN- (110) orientation, c, = 2rK + rc + rN = 5.376 A 
which is also less than a.  This evaluation shows that, just above Tc. a CN- dipole oriented 
and stabilized along a (001) direction has not the real space for it. Necessarily the CN- 
reorientation through (001) direction induces a shift in the centres of mass of CN- and Kf 
when CN- is passing by the (001) direction. 

Competition between the (111) and (110) orientations is still possible above Tc since 
steric hindrance of K+ and CN- ions leaves space for CN- orientations in these directions. 
These two possible orientations allow the crystal to contract in the (001) direction (the 
&-type deformation). Nevertheless the orientation of CN- in the (110) direction gives the 
largest possibility for the cell to contract. 

Table 5. Values of the l l t i ee  potential WL for three temperatures below T, using the orthombic 
lattice parameters measured by the x-ray technique 1171 

Onhorhombic lattice parameters (A) LVL @d mol-') 
T 
(K) (I b e (001) (110) (111) 

166 4.266 5.103 6.161 -168.835 -170.560 -170.045 
130 4.238 5.175 6.144 -168.154 -170.112 -169.441 

This E--tvne defnrmatinn is thus mnre favourable to a 11 101 than to a 11 111 orientation 
of the CN- dipoles and induces the final result of the CN- ordering process. Below T, 
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the potential topography induced by the phase transition is roughly described in figure 7; 
this topography is deduced from the results given in table 5. We note the change in the 
potential topography at the phase transition in comparing figure 6 and figure 7. The potential 
minimum of the the (1 10) orientation is decreased by about 1 kal mol-’ while the potential 
minima of the (1 11) and (001) orientations are increased by about 0.5 kcal and 1.5 kcal, 
respectively, confirming the final orientation of CN-. 

The small difference between the (110) and (111)-oriented CN- potential minima in 
pure material indicates that any residual stress or defect in the crystal can change the 
stmcture of ordered phase just below T, and explains the appearance of a monoclinic phase 
in pure KCN when the sample is submitted to thermal cycling or powder grinding [22]. 
These situations have been described by Michel and Theums [U] as destablization of the 
orthorhombic structure given the advantage of the antiferroelastic monoclinic phase. 

P Bourson and D Durand 
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